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Abstract

Gene clustering and sample clustering are commonly used to find patterns in gene expres-
sion datasets. However, in heterogeneous samples (e.g. different tissues or disease states), genes
may cluster differently. Biclustering algorithms aim to solve this issue by performing sample
clustering and gene clustering simultaneously. Existing reviews of biclustering algorithms have
yet to include a number of more recent algorithms and have based comparisons on simplistic
simulated datasets without specific evaluation of biclusters in real datasets, using less robust
metrics.
In this study we compared four classes of sparse biclustering algorithms on a range of simulated
and real datasets. In particular we use a knockout mouse RNA-seq dataset to evaluate each
algorithm’s ability to simultaneously cluster genes and cluster samples across multiple tissues.
We found that Bayesian algorithms with strict sparsity constraints had high accuracy on the
simulated datasets and didn’t require any post-processing, but were considerably slower than
other algorithm classes. We assessed whether non-negative matrix factorisation algorithms can
be repurposed for biclustering and found that, although the raw output was poor, after using
a sparsity-inducing post-processing procedure we introduce, one such algorithm was one of the
most highly ranked on real datasets. We also exhibit the limitations of biclustering algorithms
by varying the complexity of simulated datasets. The algorithms generally struggled on simu-
lated datasets with a large number of implanted factors, or with a large number of genes. In
real datasets, the algorithms rarely returned clusters containing samples from multiple tissues,
which highlights the need for further thought in the design and analysis of multi-tissue studies
to avoid differences between tissues dominating the analysis.
Code to run the analysis is available at https://github.com/nichollskc/biclust_comp, in-
cluding wrappers for each algorithm, implementations of evaluation metrics, and code to sim-
ulate datasets and perform pre- and post-processing. The full tables of results are available at
https://doi.org/10.5281/zenodo.4317556

1 Introduction
Clustering can be used in two main ways to analyse gene expression datasets [1]. The first is
to cluster the samples, finding groups of samples that have similar expression in all genes. This
can be used, for example, to find subgroups of disease [2]. The second is to cluster the genes,
finding groups of genes that have similar expression across all samples. Finding such groups
of genes has many useful applications such as inferring function using guilt by association and
inferring regulatory relationships [3].
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Instead of clustering only samples or only genes, biclustering algorithms find groups of sam-
ples that have similar expression in some subset of the genes, effectively clustering both genes
and samples simultaneously. Such a group is called a bicluster and we say that the bicluster
consists of a set of samples and a set of genes. Biclustering has three main advantages over
normal clustering. Firstly, it can discover meaningful groups that would not be detected us-
ing normal clustering; in complex datasets, many interesting groupings of genes will not hold
across all samples. For example, we might expect genes to cluster differently in different cell
types. Secondly, it provides a link between sets of genes and sample traits such as disease or
sex. For example, if a biclustering algorithm returns a bicluster consisting of all the samples
from patients with a given disease and a small set of genes then we can hypothesise that the
set of genes might have biological importance for the disease. Finally, biclustering algorithms
are additive, allowing the algorithm to learn biclusters corresponding to confounders, such as
batch or sex, and adjust for these confounders whilst simultaneously extracting biologically in-
teresting biclusters. In this study we have focused on identifying algorithms that should be able
to identify sparse biclusters in a complex bulk RNA-seq dataset, such as one including samples
from multiple cell types.

There exist previous reviews of biclustering algorithms [4–7], but we hope to improve on
them in the following ways. First, we include new classes of algorithm yet to be considered
in independent comparison studies. In particular, we include non-negative matrix factorisation
algorithms, which we believe can be repurposed for biclustering, tensor factorisation algorithms,
which aim to improve performance by sharing information across tissues, and two Bayesian
algorithms which allow for a mixture of sparse and dense biclusters. Second, we use more
robust metrics. Horta and Campello investigated metrics used to evaluate similarity between
biclusterings, and found problems with many of the metrics used by previous comparison papers
[8]. In this study we use one of the two metrics recommended by Horta and Campello, which
was shown to satisfy all but one of their criteria. Third, we narrow the gap between real
and simulated datasets. Previous reviews have often used unrealistically simplistic simulated
datasets, such as using only K = 1, 2, 3, 4, 5 biclusters, leading to discrepancies between the
conclusions they draw on simulated and on real datasets [6]. In this study we simulate datasets
from a wider range of complexities, including datasets closer in complexity to real datasets than
those included in previous reviews. A final key flaw of existing comparison studies is the lack of
evaluation of biclustering ability on real datasets. In the absence of known structure in the real
gene expression datasets used for evaluation, previous reviews have evaluated sample clustering
ability and gene clustering ability separately. We carefully chose a knockout mouse RNA-seq
dataset that allows linked analysis of sample clustering and gene clustering, thus allowing direct
evaluation of biclustering on real datasets.

2 Methods
Here we discuss the algorithms compared, the datasets they are tested on and the evaluation
metrics used to score their performance. Similar to previous reviews, we use a mixture of
simulated and real datasets. Simulated data is important as it allows more precise evaluation
of performance, since the true structure of the data is known. However, it is difficult to exactly
mimic the noise and structure of real gene expression datasets, so it is also important to see
whether the algorithms can handle the noise structure of real datasets.

2.1 Algorithms compared
We chose most promising algorithms from four classes of algorithm, focusing on sparse algorithms
(Table 1).

We define a matrix Y ∈ Rn×p where entry Yij gives the expression of gene j in sample i.
This can either be the raw read count from an RNA-seq experiment, or a normalised count
which has been adjusted for sample-specific effects such as library size, or gene-specific effects
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such as mean expression level. The typical approach to biclustering is to factorise this matrix
as a product of two sparse matrices X ∈ Rn×K , which we call the sample loadings matrix, and
B ∈ Rp×K , which we call the gene loadings matrix, with error matrix ε:

Y = XBT + ε (1)

The individual algorithms are described in detail in Section S1. Here we discuss why each
algorithm was chosen for inclusion in this study and group the algorithms as Popular, Adaptive,
NMF and Tensor.

2.1.1 Popular algorithms

We include two algorithms which have been included in previous reviews, which we use as a
baseline to allow relative performance to be related to other comparison studies. FABIA [9] is a
Bayesian algorithm using sparsity-inducing priors, included in a number of previous comparisons
[3, 6, 7, 19]. Although our study focuses on sparse biclustering algorithms, we chose to also
include Plaid [10, 11] even though it does not enforce sparsity, as it has often appeared as one of
the better performing algorithms in other studies [6, 7] and its inclusion thus provides a helpful
link to these studies.

2.1.2 Adaptive Bayesian algorithms

Like FABIA, BicMix [16, 17] and SSLB [18] use sparsity-inducing priors. The key difference
with BicMix and SSLB is that they allow for both sparse and dense biclusters, and adapt the
sparsity constraints to each bicluster. Neither has been included in previous comparisons but
they have been compared against each other and against FABIA in the paper introducing SSLB,
where both achieved much greater sparsity and accuracy than FABIA.

2.1.3 Non-negative matrix factorisation

Non-negative matrix factorisation (NMF) algorithms in general are not designed for biclustering,
but since biclustering can be described as sparse matrix factorisation, NMF algorithms can
recover biclusters if they use sufficiently strong sparsity constraints. We chose to include two
examples of such algorithms: SNMF [13] and nsNMF [12]. The main advantage we expect these
algorithms will have is speed, as they are computationally much simpler than many of the others
included in this study.

2.1.4 Tensor algorithms

When applying an algorithm to data from multiple cell types, a natural extension to the two-
dimensional algorithms presented so far is a three-dimensional algorithm which exploits similar-
ity between corresponding samples in different cell types. We chose to include two algorithms
which attempt this: SDA [15] and MultiCluster [14].

2.2 Algorithm parameters
The algorithms evaluated here, outlined in Table 1, have many parameters which can be tuned.
Before running the full analysis, we conducted a parameter sweep (Section S2) to see if there
were any parameter values that consistently improved the score relative to that when the default
values were used. For most algorithm parameters, there was either no clear optimal value, or the
default value was optimal. Thus for most algorithms we used the default parameters throughout
this study. One key exception was BicMix, which has a parameter determining whether or not
each gene gets transformed to a Gaussian distribution before the algorithm runs. Changing this
parameter had a dramatic but inconsistent effect, so we decided to use two versions of BicMix:
BicMix, using default behaviour of not transforming genes, and BicMix-Q, which does apply
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the Gaussian transformation before analysis. Full discussion of our investigation of parameter
sensitivity are given in Section S2.

2.3 Simulated datasets
We simulated individual gene expression data for each gene as a sum across biclusters of negative
binomial counts. Our base model for generating a gene expression dataset with p genes, m
individuals and t tissues and with K potentially overlapping biclusters is illustrated in Figure 1
and described below:

1. For each bicluster k = 1, . . . ,K:
(a) Select genes to include in bicluster k: first draw number of genes gk uniformly from

the set { p
100 ,

p
10 ,

p
5 ,

p
2 , p} and then pick a random sample of gk genes.

(b) Select individuals to include in bicluster k: first draw number of individuals mk

uniformly from the set { m
100 ,

m
10 ,

m
5 ,

m
2 ,m} and then pick a random sample of mk

individuals.
(c) Select tissues to include in bicluster k: first draw number of tissues tk uniformly from

the set {1, 2, . . . , t} and then pick a random sample of tk tissues.
(d) Sample bicluster-specific mean µk ∼ Gamma(α, β) using α = 2, β = 1

600 .
(e) Sample values in bicluster using negative binomial distribution with mean µk, shared

parameter p = 0.3.
2. Add together values from all biclusters
3. Add background noise using negative binomial distribution

Formally the base model is:

Yijl =
∑
k

δikγjkτlkE
(k)
ijl +Bijl

E
(k)
ijl ∼ NegBin(nk, p)

Bijl ∼ NegBin(1, p)

nk =
µkp

1− p
µk ∼ Gamma(α, β)

(2)

where δik, γjk and τlk are binary indicators of membership of individual i, gene j and tissue l to
bicluster k respectively, E(k)

ijl is the increase in expression of gene i in tissue l in individual i due
to bicluster k and Bijl is background noise. We chose to force the genes chosen in a bicluster to
belong to a contiguous block rather than allowing genes from a bicluster to be scattered freely
throughout the matrix, and did the same for the tissues and individuals chosen in a bicluster.
This arrangement has little impact on the generality of the data but makes it easier to visualise
the datasets.

We vary the size of the dataset, the number of biclusters (which also naturally changes the
amount of overlap between biclusters) and the size of biclusters. We also introduce diversity by
using different noise distributions. For Gaussian noise we use E(k)

ijl ∼ N (µk, σ
2) and for noiseless

datasets we use E(k)
ijl = µk, Bijl = 0. A summary of the properties of all the simulated datasets

is given in Table 2.
Previous reviews have also varied simulation parameters but have often used very small

ranges such as K = 1, 2, 3, 4, 5 [6]. Real gene expression datasets are likely to be more complex
than this, so we have used larger values of K: most of our simulated datasets have K = 20 but
we consider values from K = 5 to K = 400.

The Tensor algorithms require an explicit breakdown of the samples into tissues. By listing
the samples from each tissue in turn, with individuals in the same order within each tissue,
we are able to use the Tensor algorithms on the same datasets as the remaining algorithms,
allowing direct comparison between the classes of algorithm.
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Figure 1: Illustration of process for simulating gene expression datasets with implanted biclusters.
In this diagram (A) shows steps 1.a-1.b where membership for genes (columns) and individuals
(rows) are sampled for 3 biclusters, (B) shows step 1.c for the 3 biclusters, where we extend the
biclusters from size (mk, gk) to size (mktk, gk) by sampling membership for tissues, (C) shows steps
1.d and 1.e where values for the bicluster members are sampled, with bicluster-specific means µk,
(D) shows step 2 where the effects from the 3 biclusters are added together.
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Table 2: Summary of simulated datasets. The attributes of the datasets are displayed in bold if
they differ from the base dataset. N is the number of samples, T the number of tissues and G the
number of genes in the dataset.
Name N T G Bicluster sizes K Noise

base 10 10 1000 mixed 20 NB(nk, 0.3)

N50-T2 50 2 1000 mixed 20 NB(nk, 0.3)
N10-T20 10 20 1000 mixed 20 NB(nk, 0.3)
N100-T10 100 10 1000 mixed 20 NB(nk, 0.3)
N500-T10 500 10 1000 mixed 20 NB(nk, 0.3)
G100 10 10 100 mixed 20 NB(nk, 0.3)
G5000 10 10 5000 mixed 20 NB(nk, 0.3)
large-K20 300 20 10000 mixed 20 NB(nk, 0.3)

negbin-medium 10 10 1000 mixed 20 NB(nk,0.1)
negbin-high 10 10 1000 mixed 20 NB(nk,0.01)
Gaussian 10 10 1000 mixed 20 N (µk, 20

2)
Gaussian-medium 10 10 1000 mixed 20 N (µk, 100

2)
Gaussian-high 10 10 1000 mixed 20 N (µk, 300

2)
noiseless 10 10 1000 mixed 20 No noise

sparse 10 10 1000 small 20 NB(nk, 0.3)
dense 10 10 1000 large 20 NB(nk, 0.3)
sparse-square 10 10 1000 small, square 20 NB(nk, 0.3)
dense-square 10 10 1000 large, square 20 NB(nk, 0.3)

K5 10 10 1000 mixed 5 NB(nk, 0.3)
K10 10 10 1000 mixed 10 NB(nk, 0.3)
K50 10 10 1000 mixed 50 NB(nk, 0.3)
K70 10 10 1000 mixed 70 NB(nk, 0.3)
large-K100 300 20 10000 mixed 100 NB(nk, 0.3)
large-K400 300 20 10000 mixed 400 NB(nk, 0.3)

2.4 Real datasets
A key limitation of the existing reviews of biclustering algorithms is their inability to assess
simultaneous clustering of samples and genes on real datasets, due to the absence of known
biclusters in the data. In order to have predictable bicluster structure in a real dataset, we
chose to use a knockout mouse dataset [20, 21]. We proposed that a successful algorithm would
recover, for each of the 106 knockout genes, a bicluster containing the roughly 20 samples where
the gene was knocked out and enriched for genes that share a pathway with the knocked-out
gene. Thus this dataset allows us to have some sense of its true bicluster structure.

2.4.1 IMPC dataset

We use the RNA-seq dataset available on ArrayExpress under accession number E-MTAB-5131,
part of the International Mouse Phenotyping Consortium (IMPC) [20, 21]. It consists of 106
knockout genotypes, from each of which are available roughly 3 replicates in each of up to 7
tissues. There are also samples from wild-type mice.

To make the study feasible for multiple algorithms in terms of computational time, we chose
to restrict to a subset of genes. We restricted to the 4444 genes which share a Reactome pathway
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with at least one of the 106 knockout genes, found by searching the Reactome pathways [22, 23]
using Mouse Mine [24]. We apply three different normalisation methods to the data: (1) library
size adjustment using DESeq’s median of ratios normalisation method, (2) the log transform
x → log (x+ 1), which is commonly used in analysis of gene expression data and (3) Gaussian
quantile normalisation so that each gene has approximate N(0, 1) distribution.

2.4.2 Tensor structure

The Tensor algorithms require the dataset to have three dimensions i.e. m individuals, t tissues,
p genes rather than just n = m× t samples and p genes. We chose the 3 tissues with the most
samples (liver, lung and cardiac ventricle), and the 64 genotypes with at least one sample in each
of these tissues. Unfortunately we were unable to find information detailing which samples came
from which specific mouse replicate so couldn’t simply include a row for each individual, a column
for each gene and a layer for each tissue. Instead we pooled the samples from each genotype for
each tissue individually by taking the mean of the replicates. Thus we had m = 64, t = 3 with
a total of n = 192 samples.

This type of dataset, which we call the tensor dataset, can be used by all the algorithms,
whereas the non-tensor dataset, which simply uses all n = 1143 samples, can’t be used by the
Tensor algorithms.

2.5 Evaluation metrics
We use a range of metrics to evaluate performance of the biclustering algorithms (Table 3),
which are described fully in Section S3. In particular, we made use of an extensive study of
biclustering accuracy metrics [8] to choose the clustering error (CE) metric [25, 8] to evaluate
biclustering accuracy. This was shown to satisfy all but one of the desirable properties defined
by Horta and Campello, which is a great improvement on the consensus score and recovery and
relevance scores commonly used to evaluate biclustering similarity.

Most metrics used by previous reviews, including the clustering error metric that we intend
to use for evaluation of performance on simulated datasets, cannot be used on real datasets,
as they require knowledge of the entire biclustering structure of the dataset. We introduce
two metrics that can be used even when nothing is known about the structure of the dataset:
Normalised Reconstruction Error (NRE) and Mean Biclustering Redundancy (MBR).

3 Results

3.1 Post-processing
After looking at the raw output, we decided that we would first need to apply some post-
processing steps in order to allow meaningful comparison of the algorithms. The Tensor al-
gorithms, NMF algorithms and FABIA returned many biclusters containing all genes and all
samples (Figure S11 and Figure S12). We found that removing elements in the matrices below a
certain threshold, a process we call thresholding, helped to reveal the biclusters within the noisy
raw output. The exact process is described in Section S4. Without thresholding, the biclusters
returned by FABIA, SDA and the NMF algorithms were highly redundant but this redundancy
was reduced by thresholding with a threshold of 0.01 (Figure 2). The optimal threshold is simi-
lar for most algorithms, both on simulated datasets (Figure S13) and real datasets (Figure S14),
and is largely independent of the metric used to select the threshold. In particular, we note that
we could have chosen a suitable threshold using only measures available for real datasets, such
as Mean Bicluster Redundancy (Figure 2) and Normalised Reconstruction Error (Figure S15).

It is worth highlighting that Plaid and the Adaptive algorithms did not require this post-
processing step, but in the interests of avoiding bias and unnecessary complications in the
analysis we apply the same post-processing steps for every algorithm. The one exception is Plaid,
whose implementation returns only the binary membership variables so thresholding cannot be
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applied. The fact that these algorithms perform well without need for post-processing is a key
advantage in terms of ease of use.

3.2 Choice of Kinit

Overall, algorithms were poor at accurately recovering the right number of biclusters (Figure
S19), with only FABIA and BicMix-Q showing any positive correlation between the true K and
recovered K (BicMix-Q had correlation of 0.836 between true K and recovered K). Ideally we
would simply use a large value of Kinit for all algorithms, as this is what we would do in practice
on a real dataset with unknown structure. However, only Plaid and the Adaptive algorithms
have shown that they would effectively learn the number of biclusters to include. The remaining
algorithms consistently returned the same number of biclusters as they started with, so didn’t
‘learn’ K at all (Figure 3). The Adaptive algorithms achieve better performance when started
with an overestimate of the number of biclusters (Figure S20). Thus, we use Kinit = K, the true
number of biclusters for all algorithms, except for the Adaptive algorithms for which we use a
slight overestimate of Kinit (Kinit = K+10, except for when K = 20, when we use Kinit = 25.).
Note that our way of choosing Kinit is dependent on knowing the true number of biclusters, so
it gives the algorithms an advantage they would not have on real datasets. However, it allows us
to compare the ‘ideal’ behaviour of each algorithm. For the real datasets we use Kinit = 50, 200
for all algorithms.

3.3 Results on simulated datasets
The results are summarised in Table 4. Figure 4 shows the biclustering accuracy of the algo-
rithms across all the simulated datasets. The Adaptive algorithms performed best, with SSLB
having the best overall accuracy on simulated datasets (0.336). SNMF has the best accuracy of
the non-Bayesian algorithms (0.239).

The accuracy of the algorithms generally decreases as the size of the dataset increases (Figure
S21), and as the number of biclusters increases (Figure S22). We had expected algorithms to
perform better when there were fewer biclusters, which is the case for SSLB and the NMF
algorithms. However, FABIA, BicMix and BicMix-Q have poor accuracy on the datasets with
small number of biclusters. For the very largest datasets (large-K100 and large-K400 ) many
algorithms took a long time to run and only MultiCluster and nsNMF completed runs within
12 hours when using Kinit close to 400 (Table S5 shows failure counts across all runs and Table
S3 shows failure counts restricted to the value of Kinit chosen for analysis).

Changing the sparsity of the biclusters in the simulated datasets had a large effect on ac-
curacy. We had expected that on the datasets with only very sparse biclusters, the Adaptive
algorithms would have best accuracy as they have the strongest sparsity constraints but in fact
the NMF algorithms performed best on these datasets (Figure S23). We looked at how the
recovery of true biclusters was affected by the sparsity of the bicluster and found that most
algorithms achieved better recovery scores for denser biclusters (Figure 5).

The algorithms were in general, however, fairly robust to noise, with little difference in
performance between datasets using Negative Binomial noise, Gaussian noise and no noise and
only Plaid showing significant decrease in accuracy as noise was increased (Figure S24).

3.4 Results on real datasets
The algorithms performed well at finding biclusters corresponding to tissues, with many achiev-
ing near perfect performance (Table 4, Figure S25). The algorithms were less effective at finding
biclusters corresponding to genotypes, with FABIA and SSLB the top two algorithms (Figure
S26). This poor clustering of samples from the same genotype might be due to the fact that
the algorithms did not return many biclusters containing samples from multiple tissue types
(Figure S27), suggesting that between-tissue differences are dominating over between-genotype
differences.
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Figure 4: Clustering error (CE) across all simulated datasets. The score is in the range [0, 1] with
larger values preferred. Datasets used are described in Table 2. Kinit is as described in Section
3.2 and standard thresholding has been applied. Runs that failed (Table S3) are discarded in the
analysis.
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Figure 5: Mean recovery of true biclusters, grouped by size of true biclusters (fraction of total
matrix area taken up by true bicluster). We restrict to the datasets base, sparse, dense, sparse-
square, dense-square. For each true bicluster in these datasets and for each algorithm we find
the recovered bicluster achieving maximum Jaccard index with the true bicluster. We call this
the recovery score for that true bicluster and that algorithm, which is a measure of how well the
algorithm has recovered a particular true bicluster. This plot shows the spread of recovery scores
for each algorithm, grouped by the proportion of the total area of the dataset taken up by the true
bicluster. Recovery scores are generally better for denser biclusters, though Plaid has notably lower
recovery scores for the densest biclusters compared to other algorithms.
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Figure 6: Gene clustering ability, measured by the mean proportion of recovered biclusters which are
enriched for at least one pathway. Enrichment is measured using the one-tailed hypergeometric test
adjusted for multiple testing using the Benjamini-Yekutieli correction, using a range of thresholds.
The median of this measure is shown for each algorithm, split into tensor and non-tensor datasets.
Runs that failed (Table S4) are discarded in the analysis.
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Many algorithms also achieved good clustering of genes, as measured by enrichment of bi-
clusters for Reactome pathways (Figure 6 and Figure S28), with FABIA, SSLB, nsNMF, Mul-
tiCluster and Plaid achieving near perfect scores on multiple versions of the dataset. However,
this performance should be considered alongside the fact that Plaid returned on average only
4 biclusters and that nsNMF returned factors with high similarity to each other (Figure S14)
and thus many of nsNMF’s factors may be enriched for the same small set of Reactome path-
ways. For example, in one run 145 of the 200 factors recovered by nsNMF were enriched for the
‘Metabolism’ pathway (q < 0.05) compared to only 39 of the 188 factors recovered by an SSLB
run on the same version of the IMPC dataset.

The unifying test on IMPC data is the biclustering ability, measured as the proportion
of knockout genotypes for which the bicluster best recovering the samples is enriched for at
least one pathway containing the knocked-out gene (Figure 7). To achieve a high score, an
algorithm needs to (1) cluster samples well by genotype, (2) cluster genes well by pathway and
(3) return biclusters where there is a link between the samples selected and the genes selected.
The NMF algorithms, Plaid and SSLB did best according to this metric, achieving enrichment
of relevant pathways for approximately 45% of the knockout genotypes in multiple versions of
the IMPC dataset. Most algorithms had worse performance when using Kinit = 200 (Figure
S29), particularly SNMF which failed on 34 of the 40 runs using Kinit = 200 (Table S6). Plaid
was the only method to fail on a higher percentage of all runs (54 out of 120) but had similar
failure rates when using Kinit = 50 and Kinit = 200.

Strikingly, the reconstruction error (NRE) on the IMPC datasets is much worse (higher) than
on the simulated datasets (Figure S30), except for nsNMF. This demonstrates the additional
complexity in the real datasets compared to the simulated datasets.

3.5 Robustness
With the exception of MultiCluster, the algorithms compared here are stochastic and thus may
produce different results each time they are run. If a similar set of biclusters is recovered
by repeated runs of an algorithm, this can give confidence that the bicluster decomposition
is meaningful. For each algorithm in turn we considered pairs of runs on the same dataset
which used the same value of Kinit and calculated the similarity between each pair using CE
(Clustering Error). As MultiCluster is deterministic, it achieves a perfect score of 1 in this test.
Of the remaining algorithms, Plaid and the NMF algorithms are the only ones to have a median
similarity score between runs of over 0.5 (Figure 8).

3.6 Computational time
It is important to evalute the time taken for the algorithms to run, and how this scales with the
size and complexity of the dataset, as this can restrict the datasets that an algorithm is able
to process. The slowest algorithm on the IMPC datasets was SNMF, which took 8 hours to
run on the tensor log-transformed dataset, compared to the 7 seconds taken by nsNMF (Table
4). Figure S31 shows runtime with small value of Kinit, Figure S32 and Figure S33 show, for
simulated datasets and IMPC datasets respectively, that runtime for the Adaptive algorithms,
SDA, SNMF and FABIA changed drastically with Kinit.

4 Discussion
On simulated datasets Adaptive algorithms had the best overall performance. We investigated
the limitations of biclustering algorithms by varying dataset complexity. All algorithms were
relatively unaffected by increasing noise in simulated datasets, but performance decreased when
dataset size and number of biclusters were increased. Dense biclusters were generally recovered
better than sparse biclusters. From a biological perspective, we expect the dense biclusters to
correspond to confounding variables such as sex and age and the sparse biclusters to be more
biologically interesting, so this behaviour is not ideal.
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Figure 7: Biclustering ability on IMPC datasets, measured by the mean proportion of knocked-out
genes for which the bicluster best matching the samples where the gene was knocked out is enriched
for at least one pathway containing the knocked-out gene. Enrichment is measured using the one-
tailed hypergeometric test adjusted for multiple testing using the Benjamini-Yekutieli correction,
using a threshold for significance of 0.05. Standard thresholding is applied and Kinit = 50. Results
for Kinit = 200 are in S29. Note that Tensor algorithms couldn’t be run on the non-tensor datasets,
NMF algorithms couldn’t run on datasets which used quantile normalisation and Plaid failed to
run on the dataset which used DESeq’s size factor normalisation (Table S4).
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Like previous studies, we found that algorithms achieved good enrichment of biclusters for
gene pathways in real datasets. However, all algorithms struggled to cluster samples from
different tissues, highlighting the difficulty of borrowing information across tissue types. We
carefully chose a knockout mouse dataset to allow evaluation of biclustering on real datasets,
a task which has eluded previous studies, and found that NMF algorithms, SSLB and Plaid
performed best at recovering biclusters.

In terms of ease of use, Adaptive algorithms and Plaid are the only algorithms well suited
to use without tuning of Kinit, and also didn’t require post-processing. NMF algorithms and
Plaid had the most robust results, with different runs having on average a similarity of 0.5,
as measured by clustering error. Plaid and nsNMF were the fastest, with nsNMF running on
the largest IMPC dataset in 7 seconds, compared to the 8 hours taken by the slowest method
(SNMF). We found that most algorithms performed well with their default parameters, with few
parameter values that showed consistent and significant improvement over the default values
during our parameter sweep.

Overall, many algorithms performed better than the Popular algorithms which had per-
formed best in previous reviews, showing the need for continued comparison studies as biclus-
tering algorithms develop further. NMF algorithms had poor raw output but nsNMF was one of
the top-ranking methods after using the sparsity-inducing thresholding procedure we introduce.
Tensor algorithms did not perform better than other algorithm types, despite both real and
simulated datasets having tensor structure. Adaptive algorithms performed particularly well on
the simulated datasets, and SSLB also had good performance on the real datasets.

Key points

• We introduce a promising thresholding procedure to enhance sparsity of the returned
biclusters, essential for FABIA, SDA, and NMF algorithms which otherwise returned only
biclusters containing every gene and every sample.

• We introduce the MBR metric for redundancy within a run, and NRE metric for measuring
reconstruction error, which can be used even when the true structure of the dataset is not
known.

• We have shown the potential for re-purposing of NMF algorithms to the task of biclus-
tering. The nsNMF algorithm was orders of magnitude faster than the more complex
algorithms, and had good performance, particularly on the real datasets.

• For datasets with unknown structure we recommend SSLB. If a fast algorithm is needed
and the number of biclusters is known, or if metrics are available to aid the choice of Kinit,
then we recommend nsNMF.

• Normalisation method used for real datasets had a large impact on the performance of
algorithms. The algorithms performed best on log-transformed data.
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