Comparison study of sparse biclustering algorithms in gene expression datasets

Kath Nicholls, MGM Seminar Day
24th November 2020

Motivation: why biclustering?

- Measure expression of 20,000 genes across 1000 samples
- Bicluster: subset of samples, subset of genes
- Links between sample sets and gene sets
- Sum of effects, allowing adjustment for confounders

Biclustering

Motivation: why a comparison study?

- More realistic simulated datasets
- New classes of method
- Popular (FABIA, Plaid)
- NMF (nsNMF, SNMF) - faster?
- Tensor (SDA, MultiCluster) - exploits similarity between tissues?
- Adaptive (BicMix, SSLB) - sparser?

Tissue 1

Tissue 2

Tissue 3

Genes

Accuracy in simulated datasets

Adaptive (SSLB) best on simulated datasets

Performance decreased on more complex datasets

Knockout mouse dataset allows evaluation of biclustering in real datasets

- International Mouse Phenotype Consortium dataset
- 1143 samples from 7 tissues
- 106 knockout genotypes + wildtype

SSLB, nsNMF best

Method group

Poor clustering across tissues

- Many algorithms failed to cluster samples from multiple tissues

Likely contain every sample
0.29 is proportion of samples in largest tissue in the dataset (liver)

Practical issues - computational time, post-processing

Conclusions

- Improvements needed to deal with complex datasets
- Better normalisation required for multi-tissue datasets
- NMF methods promising (nsNMF)
- Significant computational benefit
- Adaptive methods best overall
- Good performance on simulated and real datasets
- Did not require post-processing
- Do not require exact number of factors

