

Comparison study of sparse biclustering algorithms in gene expression datasets

Kath Nicholls, MGM Seminar Day

24th November 2020

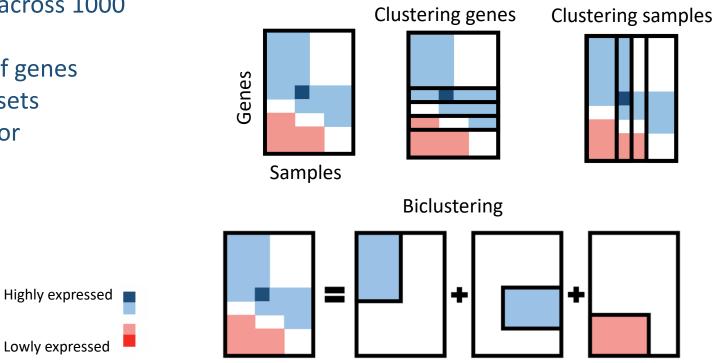
CITIID and MRC BSU

Motivation: why biclustering?

Measure expression of 20,000 genes across 1000 samples

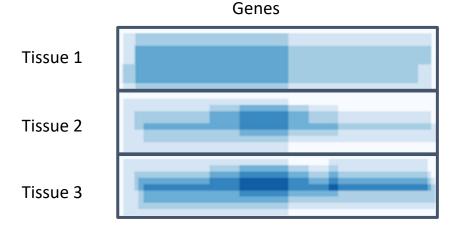
Lowly expressed

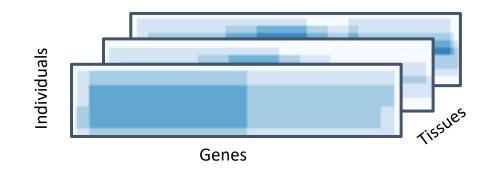
- Bicluster: subset of samples, subset of genes
- Links between sample sets and gene sets
- Sum of effects, allowing adjustment for confounders



Motivation: why a comparison study?

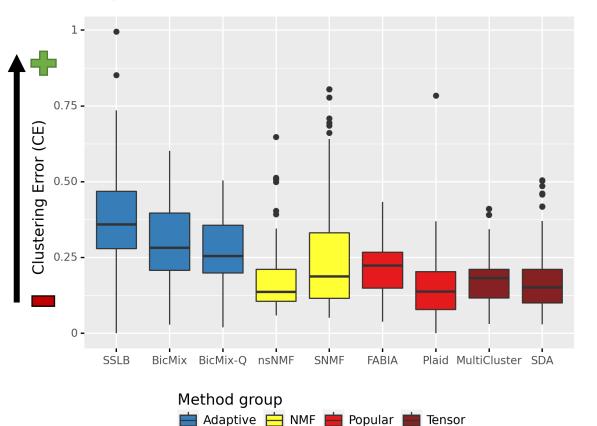
- More realistic simulated datasets
- New classes of method
 - Popular (FABIA, Plaid)
 - *NMF* (nsNMF, SNMF) faster?
 - *Tensor* (SDA, MultiCluster) exploits similarity between tissues?
 - *Adaptive* (BicMix, SSLB) sparser?
- Sparsity aids robustness and interpretability



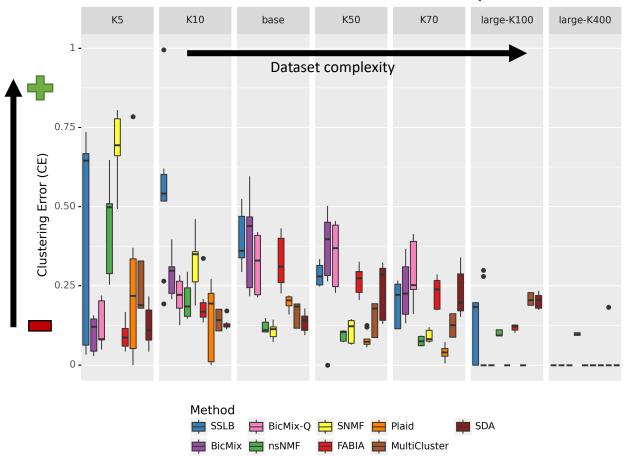


Accuracy in simulated datasets

Adaptive (SSLB) best on simulated datasets

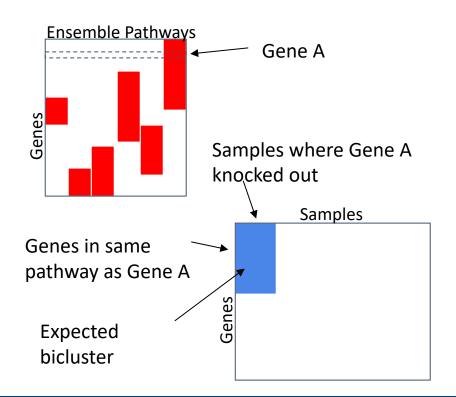


Performance decreased on more complex datasets

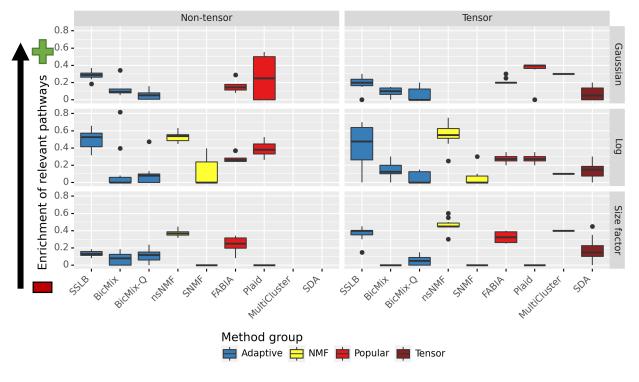


Knockout mouse dataset allows evaluation of biclustering in real datasets

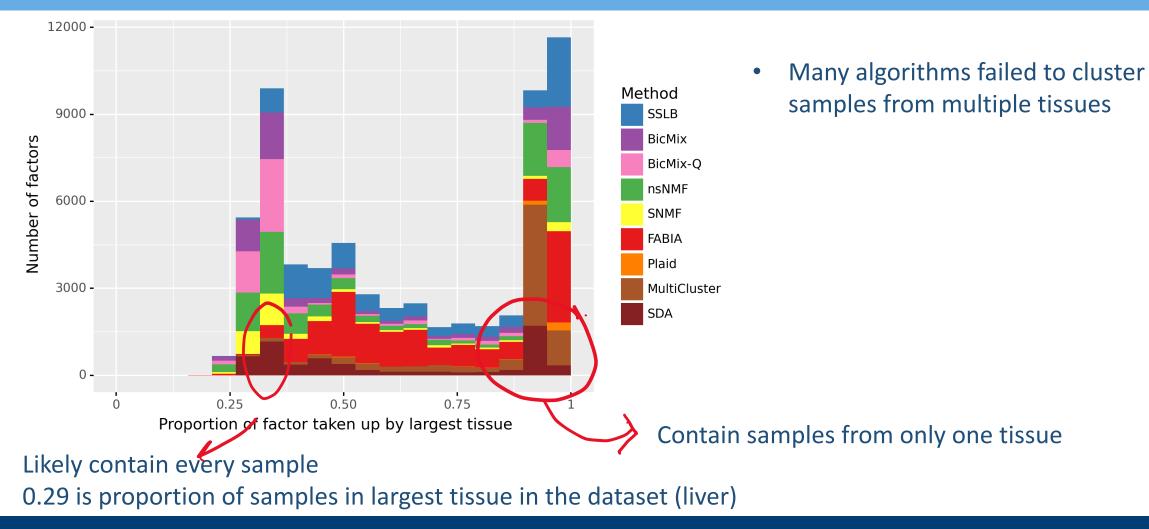
- International Mouse Phenotype Consortium dataset
- 1143 samples from 7 tissues
- 106 knockout genotypes + wildtype



SSLB, nsNMF best

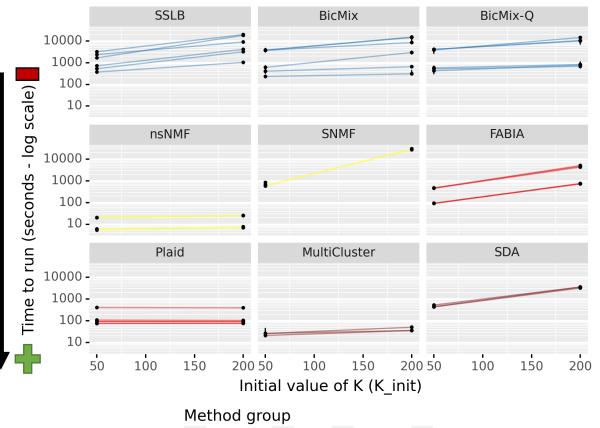


Poor clustering across tissues



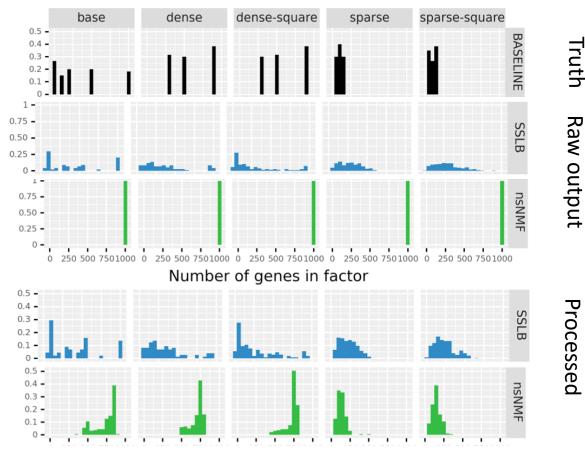
Practical issues – computational time, post-processing

nsNMF, MultiCluster significantly faster



— Adaptive — NMF — Popular — Tensor

Post-processing required to reveal biclusters (except Adaptive)



Conclusions

- Improvements needed to deal with complex datasets
- Better normalisation required for multi-tissue datasets
- *NMF* methods promising (nsNMF)
 - Significant computational benefit
- Adaptive methods best overall
 - Good performance on simulated and real datasets
 - Did not require post-processing
 - Do not require exact number of factors

