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Motivation: why biclustering?

• Measure expression of 20,000 genes across 1000 
samples

• Bicluster: subset of samples, subset of genes
• Links between sample sets and gene sets
• Sum of effects, allowing adjustment for 

confounders

G
en

es

Samples

Clustering genes Clustering samples

Biclustering

Highly expressed

Lowly expressed



Motivation: why a comparison study?

• More realistic simulated datasets
• New classes of method

• Popular (FABIA, Plaid)
• NMF (nsNMF, SNMF) – faster?
• Tensor (SDA, MultiCluster) – exploits similarity 

between tissues?
• Adaptive (BicMix, SSLB) – sparser?

• Sparsity aids robustness and interpretability
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Accuracy in simulated datasets

Adaptive (SSLB) best on simulated datasets Performance decreased on more complex datasets

Dataset complexity



Knockout mouse dataset allows evaluation of biclustering in real datasets

Ensemble Pathways
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• International Mouse Phenotype Consortium dataset
• 1143 samples from 7 tissues
• 106 knockout genotypes + wildtype

SSLB, nsNMF best



Poor clustering across tissues

Likely contain every sample
0.29 is proportion of samples in largest tissue in the dataset (liver)

Contain samples from only one tissue

• Many algorithms failed to cluster 
samples from multiple tissues



Practical issues – computational time, post-processing

Post-processing required to reveal biclusters (except Adaptive)
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nsNMF, MultiCluster significantly faster



Conclusions

• Improvements needed to deal with complex datasets

• Better normalisation required for multi-tissue datasets

• NMF methods promising (nsNMF)
• Significant computational benefit

• Adaptive methods best overall
• Good performance on simulated and real datasets
• Did not require post-processing
• Do not require exact number of factors


