Evaluation of biclustering methods for complex RNA-seq data

Kath Nicholls Smith lab meeting 5/2/2020

Apply best method to TRIAD II dataset

- What is biclustering?
- How to evaluate methods
 - Simulated datasets
 - Real datasets

Biclustering - finding patterns in gene expression data

- Gene cluster: group of genes correlated across all samples
- Bicluster: group of genes correlated in a subset of samples
 - E.g. only in certain cell types or only in disease
 - Overlaps allowed

Biclustering - finding patterns in gene expression data

Overall

usekeepi genes Sex-specific effects Tissue-specific effects

Biclustering - finding patterns in gene expression data

Application to cell-types in mouse brain

SSLB, Moran et al. 2019 (preprint)

Advantages

- Adjust for confounding effects at the same time as biologically interesting effects
 - Expect factors related to confounders such as sex, batch
- Find links between groups of genes and sample traits such as disease and cell type

- What is biclustering?
- How to evaluate methods
 - Simulated datasets
 - Real datasets

Evaluating biclustering methods

- Aim: know which method we can trust and how to use it best
- Interpretability are the biclusters easy to interpret?
- Robustness if you run it multiple times do you get similar results? Does parameter choice matter?
- Computational requirements how long does it take to run?
- Accuracy simulated and real datasets

True structure

- Simulated data generate from networks using Gene Net Weaver
 - Can simulate knockout experiments etc.
 - Want to tell difference between network structures

- Open question: what differences do we expect between gene networks?
 - Individual variation
 - Variation between two cell types
 - Variation between healthy and disease

- What is biclustering?
- How to evaluate methods
 - Simulated datasets
 - Real datasets

'Accuracy' on real datasets

- Common approaches to assessing accuracy:
 - Score clustering of samples e.g. cancer subtypes
 - Score clustering of genes e.g. by enrichment for GO/KEGG pathways

'Accuracy' on real datasets

- Plan: use known/expected biclusters in real data
- Open question: what biclusters can we expect? I.e. do we know a group of genes that should act differently in a subset of samples?
 - E.g. expect genes on X and Y chromosomes to act differently in male vs female patients
 - E.g. metabolism switch are there good gene lists in KEGG? Are there experiments that would reveal this?
 - E.g. cell type specific genes

Conclusion

- Biclustering is a promising method for gene expression dataset over multiple cell types
- Important to evaluate methods before applying
 - Have confidence in the method
 - Guide choice of parameters
 - Understand how to interpret output
- Plan to use combination of simulated and real datasets