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Overview

• What is biclustering?
• How to evaluate methods
• Simulated datasets
• Real datasets



Biclustering - finding patterns in gene 
expression data

• Gene cluster: group of genes correlated across all samples
• Bicluster: group of genes correlated in a subset of samples

• E.g. only in certain cell types or only in disease
• Overlaps allowed
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Biclustering - finding patterns in gene 
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Application to cell-types in mouse brain

SSLB, Moran et al. 2019 (preprint)

• Single-cell RNA-seq data (Zeisel et al. 2015)
• Original paper categorized cells

• 9 major classes
• 47 subclasses
• Identified potential markers for classes

• Biclustering method SSLB found a cluster for 
each major class, and many subclasses

• The bicluster of each class contained the 
corresponding potential marker gene



Advantages
• Adjust for confounding effects at the same time as 

biologically interesting effects
• Expect factors related to confounders such as sex, batch

• Find links between groups of genes and sample 
traits such as disease and cell type
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Evaluating biclustering methods
• Aim: know which method we can trust and how to 

use it best

• Interpretability – are the biclusters easy to 
interpret?
• Robustness – if you run it multiple times do you get 

similar results? Does parameter choice matter?
• Computational requirements – how long does it 

take to run?

• Accuracy – simulated and real datasets
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• Simulated data – generate from networks using 
Gene Net Weaver
• Can simulate knockout experiments etc.
• Want to tell difference between network structures

All connected Modular Disconnected

Accuracy on simulated datasets
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• Open question: what differences do we expect 
between gene networks?
• Individual variation
• Variation between two cell types
• Variation between healthy and disease

Accuracy on simulated datasets
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‘Accuracy’ on real datasets
• Common approaches to assessing accuracy:
• Score clustering of samples e.g. cancer subtypes
• Score clustering of genes e.g. by enrichment for 

GO/KEGG pathways
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• Plan: use known/expected biclusters in real data
• Open question: what biclusters can we expect? I.e. 

do we know a group of genes that should act 
differently in a subset of samples?
• E.g. expect genes on X and Y chromosomes to act 

differently in male vs female patients
• E.g. metabolism switch – are there good gene lists in 

KEGG? Are there experiments that would reveal this?
• E.g. cell type specific genes

‘Accuracy’ on real datasets



Conclusion

• Biclustering is a promising method for gene 
expression dataset over multiple cell types
• Important to evaluate methods before applying
• Have confidence in the method
• Guide choice of parameters
• Understand how to interpret output

• Plan to use combination of simulated and real 
datasets


