
S1 Algorithms compared

Most algorithms included in this comparison use the same form, differing primarily in
whether they explicitly allow sharing of information across cell types and in which approach
they use to induce sparsity in the biclusters. We define a matrix Y ∈ Rn×p where entry
Yij gives the expression of gene j in sample i. This can either be raw read counts from
an RNA-seq experiment, or normalised counts which have been adjusted for sample-specific
effects such as library size, or gene-specific effects such as mean expression level. The typical
approach to biclustering is to factorise this matrix as a product of two matrices X ∈ Rn×K ,
which we call the sample loadings matrix, and B ∈ Rp×K , which we call the gene loadings
matrix, with error matrix ε:

Y = XBT + ε (1)

S1.1 Plaid

The general Plaid model is:

Yij = µ0 +
K∑
k=1

(µk + αjk + βik) ρjkκik + εij (2)

The gene expression matrix is written as a sum of K layers, each of which is a sum of a
layer effect µk, gene-specific effects αjk for each gene and sample-specific effects βik for each
sample. The membership of genes and samples to each layer is given by binary variables ρjk
and κik respectively. Finally, there is a background layer with constant value µ0. The error
for each entry is given by εij. Layers are added one-at-a-time and parameters are chosen by
alternating ordinary least squares.

S1.2 FABIA

Factor Analysis for Bicluster Acquisition (FABIA) [1] is a sparse factor analysis model using
the model given in Equation 1. FABIA induces sparsity by using a Laplacian prior on all
entries of X and B. The same prior is used for all entries in the matrix.

In the parameter sweep conducted before full analysis, we found that using higher sparsity
by setting spz = 1.5 greatly improved FABIA’s performance.

S1.3 BicMix

BicMix [2, 3] uses the model given in Equation 1 and allows each bicluster to be either
‘sparse’ or ‘dense’. On all ‘sparse’ biclusters, BicMix encourages sparsity through three
layers of shrinkage, each of which uses a three parameter beta (TPB) prior [4].

One parameter that drastically affected performance was whether the data was quantile-
normalised before BicMix ran. Since the effect was substantial but inconsistent, we ran
BicMix twice on each dataset: once with quantile-normalisation (BicMix-Q) and once with-
out (BicMix).
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S1.4 SSLB

Spike-and-Slab Lasso Biclustering (SSLB) [5] is another Bayesian biclustering algorithm
using the model given in Equation 1. SSLB uses the Spike-and-Slab Lasso prior [6] on
both the factor matrix X and the loadings matrix B. The Spike-and-Slab Lasso prior is a
mixture of two Laplacians, one of which has weak regularisation (the slab) and one has
strong regularisation (the spike). When fitting a model, stronger regularisation will result
in a sparser result but may come at the expense of accuracy. Using this prior allows much
stronger regularisation on the coefficients that are near-zero (those in the spike) in order to
achieve sparsity, whilst having weaker regularisation on the larger coefficients (those in the
slab) to avoid loss of accuracy. Moran et al. claim that their algorithm produces sparser
matrices than FABIA and BicMix.

Another advantage of the SSLB prior compared to FABIA and BicMix is that it allows
different levels of sparsity for each bicluster. FABIA uses the same prior for all biclusters,
and BicMix only allows for two different levels of sparsity (‘sparse’ or ‘dense’). SSLB allows
each bicluster to have a different sparsity parameter.

S1.5 SDA

In contrast to the matrix algorithms seen so far, Sparse Decomposition of Arrays (SDA) [7]
rearranges the gene expression matrix to be a 3D tensor with dimensions m×p× t where the
total number of samples n = mt is the product of the number of individuals m and number of
tissues t. It decomposes the gene expression matrix Y as a tensor product of three matrices
A,B,Z corresponding to individual, gene and tissue components respectively:

Y =
∑
k

ak ⊗ bk ⊗ zk + ε (3)

This enables information to be shared between different tissues, which the other algo-
rithms are unable to do. This decomposition can be written as a sum of contributions from
each bicluster:

Yijl =
∑
k

AikBjkZlk + εijl (4)

SDA encourages sparsity in the gene components by using a prior similar to that of SSLB.
It uses the Gaussian Spike-and-Slab prior described in [8], which consists of a point-mass at
0 (the spike) and a Gaussian distribution (the slab). It does not encourage sparsity in either
sample components or tissue components.

The implementation of SDA that we use provides an alternative model for when t = 1,
but we have chosen not to include it in this comparison as the tensor factorisation seems the
most promising.

S1.6 SNMF

Sparse non-negative matrix factorisation (SNMF) [9] factorises the gene expression matrix
Y as a product of two non-negative matrices X and B. Non-negativity makes the biclusters
easier to interpret, and naturally encourages sparsity. SNMF uses an L1 penalty on the
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elements of the gene loadings matrix B to further encourage sparsity of this matrix. The
paper also includes a algorithm that uses an L1 penalty on the sample loadings matrix
instead, but we chose to use the version with sparsity on the gene loadings matrix as one of
the main aims is to find interesting groups of genes, and these are easier to interpret if they
are sparser.

S1.7 nsNMF

Like SNMF, the non-smooth non-negative matrix factorisation (nsNMF) model [10] factorises
the gene expression matrix as a product of non-negative matrices:

Y = XSB (5)

The key difference is the inclusion of a third matrix, called the smoothing matrix :

S = (1− θ)I +
θ

K
11T (6)

When θ = 0, we have S = I which makes nsNMF equivalent to normal non-negative
matrix factorisation. However, for larger θ, the matrix S helps to increase sparsity without
increasing error. Without it, increasing sparsity of samples loading matrix X would encour-
age the genes loading matrix B to be denser in order for the product XB to be close to the
original matrix Y . Thus if we want sparsity in both X and B, we will suffer an increase in
error. With nsNMF, Y = (XS)B so in order to allow B to be sparse, we must make sure
that XS is not too sparse. When a matrix is multiplied by S, it becomes less sparse. Thus
we can encourage X to be sparse, and XS will not be that sparse, meaning that B will not
be forced to be denser. Thus, with nsNMF we can apply sparsity constraints to B as well
as to X without a large increase in the error.

S1.8 MultiCluster

MultiCluster [11], like SDA, rearranges the gene expression matrix into a 3D tensor and
decomposes it as:

Y =
∑
k

ak ⊗ bk ⊗ zk + ε (7)

To aid interpretability and encourage sparsity, the tissue components zk are constrained
to be non-negative. MultiCluster uses a deterministic algorithm to find optimal components
ak, bk, zk for each k in turn.
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Table S1: Datasets used in the parameter sweep.

Name Individuals Tissues Genes Bicluster sizes K Noise

negbin K20 10 10 1000 mixed 20 NegBin
gaussian K50 10 10 1000 small 50 Gaussian
no noise K10 10 10 1000 large 10 No noise

S2 Parameter sweep

Complex algorithms such as those included in this review can be very sensitive to choice
of parameters. This has two consequences for this review: firstly we need to decide how
to set the parameters during the review, and secondly we should consider the robustness of
algorithms to parameter choice in itself as a criterion by which to judge the algorithms.

Many previous reviews of biclustering algorithms have used a single set of parameters
throughout the study [12, 13]. By taking this approach, the comparison study naturally
favours the algorithms which have good default parameters, or which do not vary much
depending on the parameter choice. Another approach is to try many different combinations
of parameters for each algorithm on each dataset. In a review of module detection algorithms,
Saelens et al. performed a grid search for each algorithm on each dataset to find an optimal set
of parameters [14] for each dataset. This approach of finding optimal parameter sets can be
computationally expensive and also does not extend well to real datasets, where calculating
a score for results is more difficult, as the true structure of the dataset is unknown.

We conducted a investigation of the effect of changing key parameters for each algorithm,
looking for parameter values that consistently improved performance over the default pa-
rameters on three distinct simulated datasets. Overall we found that most parameters had
little effect on performance as measured by clustering error (CE) and for most parameters,
there was either no clear optimal parameter, or the default parameter was clearly optimal.
The results are summarised in Table S2.

We simulated three very differently structured datasets (Table S1), and ran each algo-
rithm with five random seeds using Kinit = 20 and five seeds using Kinit = 50 for each set of
parameter values on each dataset. For each parameter (except K) we chose approximately
five different values, including the default value. We then ran the algorithm changing each
parameter in turn, keeping the other parameters at their default value, running 5 times with
K = 20 and 5 times with K = 50. Below we discuss for each algorithm how we chose the
parameters to change, and show the effect of changing each parameter whilst keeping the
other parameters at their default value.

S2.1 BicMix

S2.1.1 Prior

BicMix uses a Three Parameter Beta prior to induce sparsity in the factor values. There are
two key parameters that control this prior, with default values a = b = 0.5. This choice of
a, b is called the Horseshoe Prior. [4] discusses hyper-parameters for the Three Parameter
Beta distribution in sparse models, and note that it is necessary to have a < 1 in order to
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Table S2: Effect of parameters on Clustering Error (CE). For each parameter we consider
if changing it had an effect on performance and if so whether the effect was consistent and
substantial. Finally we note the action we decided to take, leaving this column blank if the
default value is used.

Method Parameter Effect? Consistent? Substantial? Action
BicMix a Yes No No

b Yes No No
qnorm Yes No Yes Run with both

FABIA alpha No
spz Yes Yes Yes Use spz=1.5
spl No
eps Yes Yes Yes None, fixed with spz=1.5
rescale l Yes (failure)

Plaid row release Yes No Yes
col release Yes No No

SDA num dense No
step size Yes Yes No
conv crit No

nsNMF θ Yes Yes No
SNMF β Yes No No
SSLB d No

IBP No
alpha No
a No
b No
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Figure S1: Parameter sweep for BicMix. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at their
default values. The default value for a parameter is highlighted in red on the x-axis. Higher
clustering error values are better.

achieve sparse solutions, and suggest using b < 1 too. We used this to guide our choice of
values to try for a, b.

The performance is affected by these parameters, but the optimal parameter choice isn’t
the same for all datasets (Figure S1).

S2.1.2 Pre-processing

The other important parameter is qnorm, which determines whether or not a Gaussian rank
transformation is applied to each gene in the data matrix before BicMix runs.

Gaussian rank transformation transforms each variable (gene) so that the resulting dis-
tribution is exactly Gaussian. The values from the original variable are ranked with ties
broken at random, and the value at position k in the list of n values will be mapped to the
k

n+1
quantile of the standard Gaussian N(0, 1). A key consequence of this is that the many

0s will get mapped to different values, so this introduces noise to the data.
Changing qnorm has a dramatic effect on performance (Figure S1). Most notably, the

performance on the dataset gaussian K50 is near 0 when the data are quantile-normalised.
Due to the large changes in performance with quantile-normalisation, we ran two versions

of BicMix: one with quantile-normalisation and one without. To check that the default prior
parameters are sufficient when quantile-normalisation is not used, we performed another
parameter sweep with qnorm = 0 and found that there is no parameter choice that shows
consistent improvement over the default choice a = b = 0.5 (Figure S2).
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Figure S2: Parameter sweep for BicMix without qnorm. Each plot shows the effect on the
clustering error measure (CE) when a single parameter is varied, while the other parameters
are kept at their default values (with the exception of qnorm, which is kept at 0 for the
parameter sweeps for all other parameters). The default value for a parameter is highlighted
in red on the x-axis. Higher clustering error values are better.

S2.2 FABIA

S2.2.1 Sparsity

FABIA controls the sparsity of the factor matrix X using spz. The sparsity of the loadings
matrix B is controlled using α and spl. For all these parameters, higher values increase
sparsity. The parameter eps determines a threshold under which entries in either X or
B will be treated as 0, so higher values increase sparsity of both X and B. The pyfabia
implementation gives ranges for each value, which we used to guide our choice of values.

The two that seem to have the biggest effect are eps and spz (Figure S3). The best
performance was achieved with spz = 1.5 for all datasets. Since the change is substantial
and consistent, we chose to use this value of the parameter for the rest of the study. We
investigated the effect of changing eps when spz = 1.5 and found that it still had an effect,
but it was not as great as when spz = 0.5 (Figure S4).

S2.2.2 Rescaling during fitting

If rescale l is True then FABIA rescales each Bk to have unit variance each iteration. This is
not the default behaviour, but the pyfabia documentation claims this can help convergence,
but we found that many runs using this rescaling actually failed to return a result.

S2.2.3 Bicluster membership

After fitting the model, both the pyfabia and R FABIA implementations provide functions
to determine which rows and columns belong to each bicluster. Values under the threshold
are set to 0, essentially removing this element from the bicluster. The threshold is thresZ
for X and thresL for B. These are the only two parameters varied in [14], a review of
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Figure S3: Parameter sweep for FABIA. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at their
default values. The default value for a parameter is highlighted in red on the x-axis. Higher
clustering error values are better.

module detection algorithms. This thresholding is a post-processing step which we apply to
all algorithms, so we ignored this parameter.

S2.3 Plaid

In a Bacherlor’s thesis focusing on the Plaid algorithm, Pfundstein notes that the two key
paramters to tune are row release and col release, which determine when a row or column is
removed from a bicluster [15]. These are also the only two parameters altered in the module
detection review [14]. A small recommended range of [0.5, 0.7] is given in the documentation
of the biclust package that contains the Plaid implementation we used.

Changing these parameters has some effect, but the effect differs for each dataset (Figure
S5). Since we are primarily using Plaid as a benchmark to allow results in this study to be
related to other reviews of biclustering algorithms, and since these reviews mostly used the
default parameters, we did the same.

S2.4 MultiCluster

The implementation of MultiCluster that we use doesn’t have any parameters that can be
changed.

S2.5 SDA

S2.5.1 Prior

The parameters determining the priors are set up so that the priors are uninformative, so
we didn’t alter them.
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Figure S4: Parameter sweep for FABIA with spz = 1.5. Each plot shows the effect on the
clustering error measure (CE) when a single parameter is varied, while the other parameters
are kept at their default values. The default value for a parameter is highlighted in red on
the x-axis. Higher clustering error values are better.

Figure S5: Parameter sweep for Plaid. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at their
default values. The default value for a parameter is highlighted in red on the x-axis. Higher
clustering error values are better.
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Figure S6: Parameter sweep for SDA. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at
their default values. The default value for a parameter is highlighted in red on the x-axis.
Higher clustering error values are better.

S2.5.2 Convergence

SDA is one of the slower algorithms. We suspected this was partly due to its strict con-
vergence criteria. The parameter conv crit determines the largest allowed change in free
energy at convergence, thus larger values make it easier for the algorithm to converge. The
default value is 0. In Figure S6 we see there is no difference when conv crit is 1× 10−5, but
marginal differences for larger values. Using 1× 10−5 seems to have little effect on perfor-
mance, but decreases the median running time by 50% (Figure S7). We recommend users
consider changing from the default value of conv crit in this way to save computational time.
We chose not to make the change in this study as it is valuable for us to show performance
using the default values, since this is what most users will do.

S2.6 nsNMF

The only crucial parameter for nsNMF is θ which controls sparsity. The higher θ, the sparser
the model. Surprisingly, we found that changing θ had little impact (Figure S8). The dataset
that suffered worst performance from using a high value of θ (thus a sparser model) was the
gaussian K50 dataset which had the smallest biclusters.

S2.7 SNMF

As with nsNMF, the important parameter is β, which controls sparsity. Larger β makes the
model sparser, but we found that changing the sparsity had little impact on the performance
(Figure S9).
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Figure S7: Running time of SDA with different conv crit values.
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Figure S8: Parameter sweep for nsNMF. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at their
default values. The default value for a parameter is highlighted in red on the x-axis. Higher
clustering error values are better.
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Figure S9: Parameter sweep for SNMF. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at their
default values. The default value for a parameter is highlighted in red on the x-axis. Higher
clustering error values are better.
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S2.8 SSLB

The parameter likely to have the biggest effect is the choice of prior for the values in B and
X.

S2.8.1 Prior for B

The prior on B is a Beta-Binomial, with parameters a, b. Changing these seems to have little
effect on the performance of SSLB (Figure S10).

S2.8.2 Prior for X

There are three different priors that can be used for X. The prior choice is controlled by the
parameters IBP and d. If IBP = 0 then the simple Beta-Binomial prior is used; if IBP = 1
and d = 0 then a normal IBP is used; if IBP = 1 and d 6= 0 then a Pitman-Yor extension of
the IBP is used.

The simplest is the same Beta-Binomial used for B, which has parameters ã, b̃. We
chose to experiment with using this Beta-Binomial prior, but, since it is not the default and
generally performed worse than the other priors in the original paper [5], we decided not to
investigate optimal parameters for this prior. Figure S10 shows that using the Beta-Binomial
prior (i.e. IBP = 0) slightly degrades the perforance.

The prior used by SSLB by default is the IBP prior, which uses the parameter α. This
has default value α = 1

N
, i.e. it is dependent on the number of samples. All the datasets

shown in Figure S10 have the same number of samples: N × T = 10 × 10 = 100, so the
default value was 1/100 for all datasets.

Finally, the Pitman-Yor extension to the IBP prior uses both α and d. We only investi-
gated the effect of changing d. d = 0 gives the standard IBP prior, and we did not find a
significant difference when the Pitman-Yor extension was used, for any values of d (Figure
S10).
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Figure S10: Parameter sweep for SSLB. Each plot shows the effect on the clustering error
measure (CE) when a single parameter is varied, while the other parameters are kept at their
default values. Default values were: d = 0, IBP = 1 (i.e. using the standard IBP prior),
α = 1

N
= 1

100
, a = b = 1

K
. Higher clustering error values are better.
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S3 Evaluation Metrics

S3.1 Accuracy on simulated datasets

Common choices for metric to compare biclusterings, and thus to evaluate biclustering algo-
rithms on simulated datasets, are the consensus score [1, 5] and the recovery and relevance
scores [12, 5, 2, 3]. Horta and Campello defined eight desirable properties of similarity
measures for comparing biclusterings, including for example whether the measure penalises
biclusterings with duplicated biclusters [16]. The consensus score satisfies only four of these
desirable properties, and the recovery and relevance scores satisfy only one.

We chose to use the clustering error (CE) metric [17, 16] to evaluate biclustering accuracy,
which was shown to satisfy all but one of the desirable properties defined by Horta and
Campello, which is a great improvement on the consensus score and recovery and relevance
scores commonly used to evaluate biclustering similarity.

S3.1.1 Metrics comparing two biclusterings

To be able to define metrics comparing two biclusterings, we first write biclusters as sets of el-
ements. Suppose we have two factorisations Yij =

∑
kXikBjk and Ŷij =

∑
l X̂ilB̂jl. We write

each bicluster as a set of the matrix elements that it contains: Ak = {(i, j) : Xik 6= 0, Bjk 6= 0}
and Âl =

{
(i, j) : X̂il 6= 0, B̂jl 6= 0

}
.

The Jaccard index [18] measures how closely two sets match, comparing their intersection
to their union. Using the description of biclusters as sets, we can use the Jaccard index to
measure how closely two biclusters match:

J(Ak, Bl) =

∣∣∣Ak ∩ B̂l

∣∣∣∣∣∣Ak ∩ B̂l

∣∣∣ (8)

The recovery and relevance scores [12] are defined as:

Relevance :=
1

K

K∑
k=1

max
l

J
(
Ak, Âl

)
,

Recovery :=
1

L

L∑
l=1

max
k

J
(
Ak, Âl

) (9)

The consensus score also makes use of the Jaccard index, but first calculates the best way

to pair biclusters from each set. We can write a pairing of biclusters as
{(
Aki , Âli

)}min{K,L}

i=1

where each element of this set gives a pair: a bicluster Aki from A and the bicluster Âli

from Â that it is paired with. Note that if one biclustering contains more biclusters than
the other, there will be some unpaired biclusters. We seek the pairing which maximises the
following sum, the sum of the Jaccard indices of pairs divided by the number of biclusters
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in the larger biclustering:

Consensus :=
1

maxK,L

minK,L∑
i=1

∣∣∣Aki ∩ Âli

∣∣∣ (10)

In practice the optimal pairing is found using the Hungarian algorithm for the assignment
problem [19].

S3.1.2 Clustering error

The clustering error (CE) is defined as:

CE(A, Â) :=
dmax

|U |
(11)

where dmax measures how much the biclusterings intersect and |U | measures the total space
collectively covered by the biclusterings, taking overlaps into account. Despite its name, CE
is a measure of similarity between biclusters rather than dissimilarity.

We often use this measure to compare a biclustering Â =
{
Â1, . . . ÂL

}
recovered by

a algorithm to a biclustering A = {A1, . . . , AK} which we treat as the true biclustering.
However, this measure is symmetric and can also be used when there is no ‘truth’, such as
to compare two biclusterings returned by different runs of the same algorithm.

In a similar way to the consensus score, we use the Hungarian algorithm to find a pairing
of biclusters from the two sets to maximise a sum, this time the sum of the intersections of
pairs:

d :=

minK,L∑
i=1

∣∣∣Aki ∩ Âli

∣∣∣ (12)

The maximum value this sum attains is called dmax and measures how much the biclus-
terings intersect.

The size counting overlapping of a union of two sets, called |U |, is

|U | :=
∑
i,j

max
{

Ni,j, N̂i,j

}
(13)

where Ni,j := |{k : (i, j) ∈ Ak}| gives the number of times that the matrix element (i, j) is

included in biclusters in A and N̂i,j :=
∣∣∣{l : (i, j) ∈ Âl

}∣∣∣ is the same for Â.

S3.2 Normalised reconstruction error

Most metrics used by previous reviews, including the clustering error metric that we intend
to use, can only be used on simulated datasets. We introduce two metrics that can be used
even when nothing is known about the structure of the dataset. The first uses the error
matrix ε = Y − X̂B̂T = Y − Ŷ to see how similar the recovered factorisation is to the
original matrix.
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Given original matrix Y , and factorisation Ŷ = X̂B̂T returned by the algorithm, we
define the normalised reconstruction error (NRE) as:

NRE(Y, Ŷ ) :=
‖Y − Ŷ ‖F
‖Y ‖F + ‖Ŷ ‖F

(14)

where ‖A‖F denotes the Frobenius norm
√∑

ij A
2
ij.

A score of 0 indicates perfect reconstruction. The maximum score is 1, indicating a large
error relative to the true matrix Y and the recovered matrix Ŷ . One big advantage of this
metric is that it can be used on real datasets too, since all that is needed is the original
matrix Y .

S3.3 Mean Bicluster Redundancy (MBR)

The second metric we introduce that can be used without knowledge of the structure of
the dataset is the Mean Biclustering Redundancy (MBR), which measures how similar the
biclusters returned in a single run are to each other. When running biclustering algorithms
on large datasets, it can be difficult to interpret the results if the algorithms return many
copies of the same bicluster. The perfect score of 0 indicates that the biclusters do not
overlap at all, and the worst score of 1 indicates that all biclusters are identical.

We first construct a matrix J using the Jaccard index between each pair of biclusters:

Jkl :=
|Ak ∩ Al|
|Ak ∪ Al|

(15)

and then take the mean of the off-diagonal entries:

MBR(A) :=
2

K(K − 1)

K−1∑
k=1

K∑
l=k+1

Jkl (16)

S3.4 Sample clustering in real datasets

The samples in the IMPC dataset can be clustered in two main ways: by tissue or by
genotype. We refer to these as sample traits. We chose to measure how well a bicluster
matches a given sample trait using the F1 score, which balances reward for containing only
elements with the sample trait (precision) and reward for containing all the elements with
that sample trait (recall). It is defined as:

F1 score = 2× Precision × Recall

Precision + Recall
(17)

where precision and recall are defined in terms of the set S of samples with the trait and set
F of samples contained in the bicluster:

Precision =
|S ∩ F |
|F |

Recall =
|S ∩ F |
|S|

(18)
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For each trait we find the best F1 score across all biclusters, and then take the mean of
these maximum F1 scores across sample traits. We call the mean of this maximum across
all traits the sample clustering ability, the mean across only tissue traits we call the tissue
clustering ability and the mean across only genotype traits we call the genotype clustering
ability.

S3.5 Gene clustering in real datasets

The typical approach to evaluate gene clustering in real datasets is to look at what proportion
of biclusters are enriched for at least one pathway in some pathway database such as GO,
Reactome or KEGG [12, 1, 13, 20–22]. We look at what proportion of the biclusters returned
by each algorithm are enriched for at least one Reactome pathway [23, 24] (restricted to
Reactome pathways containing at least one of the 106 genes knocked out in this experiment),
measured by Fisher’s one-tailed hypergeometric test, with p-values adjusted for multiple
testing by the Benjamini-Yekutieli adjustment [25].

S3.6 Biclustering in real datasets

We identify, for each knocked-out gene, the bicluster which a algorithm has recovered which
most closely matches the samples from that knockout genotype, using the F1 score. Then
we look at whether this bicluster is also enriched for genes that share a pathway with the
knocked-out gene, using Fisher’s hypergeometric test. This evaluation of simultaneous sam-
ple clustering and gene clustering is one aspect of our study that is unique among comparisons
of biclustering algorithms, and we think it is a very important inclusion.
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S4 Post-processing

FABIA, SDA, SNMF and nsNMF return many biclusters containing all genes and all samples,
as shown in Figure S11 and Figure S12. Without post-processing, these algorithms would
thus receive very poor scores. We hypothesised that many values in the matrices defining
these biclusters were close to 0, and by setting these small values to 0 we would reveal the
underlying structure of the biclusters and thus enable meaningful evaluation.

We explored the effect of setting elements of X and B to zero if they were below a certain
threshold, with various choices of threshold α. Some algorithms, most notably BicMix,
return sample loadings Xik and gene loadings Bjk on very different scales. To avoid having
to account for this imbalance for each algorithm individually, we scaled the vectors xk and
bk for each bicluster to have L2 norm equal to 1 before removing any elements. Thus, when
using a threshold α, we set any elements satisfying the following inequality to be 0:

Xik√∑
l |Xlk|2

< α (19)

and similarly for any elements of B satisfying:

Bjk√∑
l |Blk|2

< α (20)

We found that a threshold of 0.01 was the best choice for all algorithms for simulated
datasets (Figure S13), and was also sensible for real datasets (Figure S16 and Figure S14).

It is worth noting that, since thresholding appears to affect different metrics in similar
ways, it would have been possible to choose a sensible threshold using only metrics that
we would have from a standard real dataset, such as redundancy of recovered biclusters
and reconstruction error. Also, although we believe the threshold chosen is suitable for all
algorithms, there is potential for further fine-tuning for individual algorithms.

After thresholding, the distribution of factor sizes is less extreme. Figure S18 and S17
show the distribution of bicluster sizes in terms of samples and genes respectively. Interest-
ingly some algorithms such as BicMix-Q and FABIA have a similar distribution regardless
of dataset type, whereas others such as BicMix and SNMF seem to adapt to the distribution
of bicluster sizes.
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Figure S11: Number of genes contained in biclusters, with no thresholding applied. Each
column shows a dataset with different distribution of bicluster sizes. Each graph in the
grid shows the relative frequency of the number of genes contained in biclusters. The last
row (BASELINE) shows the distribution of number of genes in biclusters in the datasets
themselves, and the other rows show the distribution for each algorithm in turn. Note that
100% of the biclusters recovered by FABIA, MultiCluster, SDA, SNMF and nsNMF contain
all 1000 genes. BicMix, BicMix-Q and SSLB used Kinit = 40 and the remaining algorithms
used Kinit = 20.
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Figure S12: Number of samples contained in biclusters, with no thresholding applied. Each
column shows a dataset with different distribution of bicluster sizes. Each graph in the grid
shows the relative frequency of the number of samples contained in biclusters. The last
row (BASELINE) shows the distribution of number of samples in biclusters in the datasets
themselves, and the other rows show the distribution for each algorithm in turn. Note that
100% of the biclusters recovered by FABIA, SDA, SNMF and nsNMF contain all 100 samples.
BicMix, BicMix-Q and SSLB used Kinit = 40 and the remaining algorithms used Kinit = 20.
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Figure S17: Number of genes contained in biclusters, with thresholding applied as specified
in Section S4. Each column shows a dataset with different distribution of bicluster sizes.
Each graph in the grid shows the relative frequency of the number of genes contained in
biclusters. The last row shows the distribution of number of genes in biclusters in the
datasets themselves, and the other rows show the distribution for each algorithm in turn.
BicMix, BicMix-Q and SSLB used Kinit = 40 and the remaining algorithms used Kinit = 20.
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Figure S19: Recovery of K. Number of recovered biclusters plotted against the true number of
biclusters when the algorithm was started with 100 biclusters and thresholding was applied
as described in Section S4. The green line shows the ideal behaviour, with number of
recovered biclusters matching the true number of biclusters exactly. A flatter line indicates
poor sensitivity to the true number of biclusters.
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Figure S20: Biclustering accuracy (CE) of algorithms plotted against Kinit. There is a line
for each of dataset types K5, K10, base, K50 and K70. For each dataset type there is a point
at Kinit = Ktrue to draw attention to the performance of the algorithm at the true value of
K. SNMF, nsNMF and MultiCluster have improved performance at low values of Kinit, even
when Ktrue is 50 or 70.
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Figure S21: Biclustering accuracy (CE) of algorithms across datasets with a range of sizes.
Note that Plaid failed to run on the large-K20 dataset due to memory constraints. The bar
shows median across all three runs on the thee random datasets of each type, with Kinit = K
except for the Adaptive algorithms, and the standard thresholding applied.
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Figure S22: Biclustering accuracy (CE) of algorithms across datasets with different numbers
of biclusters. The base dataset has 20 biclusters. The bar shows median across all runs on
the random datasets of each type, with Kinit = K except for the Adaptive algorithms, and
the standard thresholding applied.
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Figure S23: Biclustering accuracy (CE) of algorithms across datasets with different sparsity
of biclusters. The distribution of bicluster sizes of the datasets is shown in the first row of
Figures S17 and S18. The bar shows median across all runs on the random datasets of each
type, with Kinit = K except for the Adaptive algorithms, and the standard thresholding
applied.
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Figure S24: Biclustering accuracy (CE) of algorithms across datasets with different noise
distribution. The base dataset uses Negative Binomial noise. The bar shows median across
all runs on the random datasets of each type, with Kinit = K except for the Adaptive
algorithms, and the standard thresholding applied.
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Figure S25: Sample clustering ability on IMPC datasets, measured by the mean over the
tissue traits of the maximum F1 score achieved by a bicluster. Standard thresholding is
applied and results are shown both for Kinit = 50 and Kinit = 200. Note that MultiCluster
and SDA couldn’t be run on the non-tensor datasets, nsNMF and SNMF couldn’t run on
datasets using quantile normalisation and Plaid and SNMF failed to run on the DESeq
dataset.
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Figure S26: Sample clustering ability on IMPC datasets, measured by the mean over the
genotype traits of the maximum F1 score achieved by a bicluster. Standard thresholding is
applied and results are shown both for Kinit = 50 and Kinit = 200. Note that MultiCluster
and SDA couldn’t be run on the non-tensor datasets, nsNMF and SNMF couldn’t run on
datasets using quantile normalisation and Plaid and SNMF failed to run on the DESeq
dataset.
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Figure S27: Proportion of bicluster taken up by the largest tissue contained in the bicluster,
indicating how frequently the algorithms return biclusters containing multiple tissues. The
proportion will be equal to 1 if a bicluster contains only samples from one tissue. The
histogram shows that the majority of biclusters recovered contained samples mainly from a
single tissue, rather than grouping together samples from different tissues. There is also a
large spike around 0.29, which likely corresponds to biclusters containing every single sample
as this is the proportion of samples that are from the liver, the most numerous tissue. All
returned biclusters across all IMPC datasets are included in the count.
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Figure S28: Gene clustering ability on IMPC datasets, measured by the mean proportion of
recovered biclusters which are enriched for at least one pathway according to the one-tailed
hypergeometric test adjusted for multiple testing using the Benjamini-Yekutieli correction,
using a threshold for significance of 0.05. Standard thresholding is applied and results are
shown both for Kinit = 50 and Kinit = 200. Note that MultiCluster and SDA couldn’t be
run on the non-tensor datasets, nsNMF and SNMF couldn’t run on datasets using quantile
normalisation and Plaid and SNMF failed to run on the DESeq dataset.
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Figure S29: Biclustering ability on IMPC datasets, measured by the mean proportion of
knocked-out genes for which the bicluster best matching the samples where the gene was
knocked out is enriched for at least one pathway containing the knocked-out gene. En-
richment is measured using the one-tailed hypergeometric test adjusted for multiple testing
using the Benjamini-Yekutieli correction, using a threshold for significance of 0.05. Standard
thresholding is applied and results are shown both for Kinit = 50 and Kinit = 200. Note that
Tensor algorithms couldn’t be run on the non-tensor datasets, NMF algorithms couldn’t
run on datasets which used quantile normalisation and Plaid failed to run on the dataset
which used DESeq’s size factor normalisation.
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Figure S30: Normalised reconstruction error (NRE) across all datasets. Standard threshold-
ing is applied. The best score is 0. For simulated datasets, BASELINE gives the NRE of
the true factorisation Y = XBT + ε, thus indicating the best performance possible.
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Figure S31: Mean run time across large datasets (log scale). All algorithms were run with
Kinit = 20, except for Adaptive algorithms which used Kinit = 25. The base dataset has
1000 genes and 100 samples, the G5000 dataset has 5000 genes and 100 samples and the
large-K20 dataset has 10000 genes and 6000 samples. All have 20 latent biclusters. Note
that Plaid failed to run on the large-K20 dataset due to memory constraints.
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Figure S32: Effect of Kinit on run time. Each line shows median run time (log scale) for a
different dataset type, which differ only in number of latent biclusters (K5, K10, base, K50
and K70 ). The flatter the line, the less sensitive the runtime is to the choice of Kinit.
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47



References

[1] Sepp Hochreiter, Ulrich Bodenhofer, Martin Heusel, Andreas Mayr, Andreas Mit-
terecker, Adetayo Kasim, Tatsiana Khamiakova, Suzy Van Sanden, Dan Lin, Willem
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